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FOREWORD
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Allan G. Piersol. Many contributions were made by N.A.S.A.

personnel and members of the Technical Products Company

engineering staff. Particularly valuable contributions were

made by Murl H. Newberry, Milton T. Herrin, Gerald J.

Curet, Linn W. Hall, Richard E. Moore and Ronald E. JeweU

of the Marshall Space Flight Center.



ABSTRACT
i._? ;- 7

This report discusses analog and digital data reduction methods

for the analytical study of vibration data. Emphasis is placed onbasic

characteristics of vibration data to be analyzed. General techniques

are developed appropriate to both periodic data and random data. Prac-

tical considerations are included for such matters as analog instru-

mentation parameters and digital sample sizes which limit accuracy

of desired measurements. Material on the interpretation and evalua-

tion of data is illustratedwith numerous engineering examples to make

the results as meaningful as possible.

The report is divided into three sections. Section I, Data

Reduction by Analog Methods, covers various analog techniques for

data reduction which give measurements of amplitude probability density

functions, correlation functions, and power spectral density functions.

Statistical properties of random data, measurement accuracies, analog

computer times, and calibration procedures are discussed in detail.

Section Z, Interpretation and Evaluation of Data, discusses the analysis

and application of vibration data to engineering problems. Tests for

randomness, stationarity, and equivalence are outlined. Important

relationships for amplitude probability density functions, correlation

functions, and power spectral density functions, are then reviewed and

applied to various engineering examples. Section 3, Theoretical

Considerations and Digital Analysis of Data, discus se s further theoreti-

cal matters involved in vibration data analysis. This is followed by

mathematical formulae for carrying out a digital analysis of vibration

data, including flow diagrams and estimates of required digital

computer time to calculate the various functions discussed in earlier

sections of the report. /-""_ '/" "
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I. DATA REDUCTION BY ANALOG IvtETHODS

In general, data reduction is the translation of raw information into

simplified quantities which describe the information in a manner suitable

for engineering analysis and interpretation. For the specific case of

flight vehicle vibration data, the available raw information is usually one

or more sample amplitude time history records of the vibration response

at one or more points on the vehicle structure. Methods employed for

reducing vibration data by analog methods are described here, along with

appropriate discussions of some general considerations associated with

vibration data analysis.

i. I BASIC CHARACTERISTICS OF VIBRATION DATA

Before data reduction can be pursued in detail, it is necessary to

identify certain basic characteristics of the data. In particular, it should

be determined if the vibration data is representative of a random process

as opposed to a periodic process or other deterministic processes.

Perhaps the data represents a combination of both. The procedures for

reducing, ana/yzing, and interpreting data representing a random vibration

response are different from those for a periodic vibration response. The

basic characteristics of periodic and random vibration data will now be

discussed.

I. i. 1 Periodic Vibration Data

A periodic function is a special type of deterministic (analytic)

function whose amplitude time history repeats itself exactly after a time

interval T called the period. In equation form, a necessary condition
P

for a function y(t) to be periodic is

y(t) -- y(t + T ) (1.1)
P
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This is in contrast to other types of deterministic functions and random

processes where Eq. (l. l) becomes an inequality. That is,

y(t) # y (t+ Tp) (I. Z)

A periodic function may be expressed by a Fourier series as shown in Eq.

(1.3), where fl = I/Tp is the frequency in cycles per second (cps).

y(t) = C 0 + C 1 cos (ZTT,fIt + 41) + C Z cos (47-ffIt + 4 z) + C 3 cos(67"f It+43) +--"

co

= CO +n_--" Cn cos {Z7_nfl t + _n ) (I.3)

In words, Eq. (I. 3) says that a periodic function consists of a D. C. component,

C O , and an infinite number of sinusoidal components having amplitudes C n

and phases _n " The frequencies of the sinusoidal components are all even

multiples of fl ' which is called the fundamental frequency. Many periodic

functions consist of only a few or even a single component. For example, a

sine wave has a Fourier series in which all values of C n are zero except

for n= i. In other cases, the fundamental frequency is absent. For example,

suppose a periodic function is formed by mixing three sine waves which have

frequencies of 60, 75, and I00 cps. The lowest common multiple is 5 cps,

so the period for the resulting periodic function is

in the Fourier series for the function, all values of

n=12, n=lS, andn=20.

Tp = 0. Z seconds. Hence,

C n are zero except for

It should be noted that many deterministic functions are not periodic.

For example, suppose we have the sum of three sine waves which have

frequencies of 60, 75, and 300/7_. There is no common multiple since 300/77"

I-Z



is an irrational number, so the resulting function is not periodic. However,

in actual practice, such nonperiodic functions may be closely approximated

by a periodic function and expanded into an approximate Fourier series.

1.1. Z Random Vibration Data

Unlike periodic functions, the amplitude time history for a random

function never repeats itself exactly. Any given sample record represents a

unique set of circumstances, and is merely a special example out of a large

set of possible records that might have occurred. The collection of all

possible records that might have occurred is called an ensemble which forms

a random process. Thus, an amplitude time history record for a random

vibration response may be thought of as a sample record from a random

process.

Since a random process is probabilistic and not an explicit function

of time, the prediction of exact amplitudes at some future time is not possible.

Thus, a random process must be described in terms of statistical averages

as opposed to exact analytic functions. It is for this reason that the techniques

for reducing, analyzing, and interpreting random vibration data are different

from those for periodic vibration data.

The properties of a random process may be computed by raking

averages over the ensemble at any given time t. For example, the mean

value (first moment) of a random process at some time t 1 is computed by

taking the instantaneous amplitude of each record of the ensemble at time t 1 ,

summing the amplitudes, and dividing by the number of records. This

1-3



computation is illustrated in Figure I-I. The mean square value (second moment)

at time tI , and the correlation between amplitudes at two different times tI and

tg are computed in a similar manner as illustrated in Figures l-Z and I-3.

For the general case where the mean value, mean square value, and

correlation function vary with time, the random process is said to be non-

stationary. For the special case where these three properties do not vary with

time, the random process is said to be weakly stationary. If all higher

moments, that is the third moment and up, are also time invariant, the ran-

dom process is said to be strongly stationary.

If a random process is stationary, the properties of single records in

the random process can be computed by taking time averages of the single

records as opposed to ensemble averages for the collection of records. The

computation of the mean value, mean square value, and correlation function

by time averaging is illustrated in Figures I-i through i-3. For the general

case where these three time averaged properties vary from record to record,

the random process is said to be nonergodic. For the special case where

these three time averaged properties do not vary from record to record and

thus are equal to the corresponding ensemble averaged properties, the random

process is said to be weakly ergodic. If all higher moments are also independent

of the record used, the random process is said to be strongly ergodic. Note that

only stationary random processes can be ergodic.

If a vibration response is representative of a nonstationary random

process, the properties of the vibration are changing with time and can be

i-4



> Indicates ensemble average

y, (t) -- Indicates time average

_ . ltm 1"_= T-.= T" yx(t)_

I I 0
y=(t) I I

I I =-t
y.,(t) I n

,I 'y=(t) I Y"== TU_.= y=(t)at

= time average for record Yk(t)

I __ t
[t_ I t=

I I
I I
I
I
I
I
I

= time average _or record y= (t)

(t= = k-= E yt (t=)
t=l

= ensemble average for time t = t=

(t, = k-. E y,(t,)
i=1

= ensemble average for time t = tt

If the random process is stationary,

If the stationary random process is

ergodic, <,co>-= yt; i = I, 2, 3, ...

FIGURE 1-1. COMPUTATION OF MEAN VALUES
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> Indicates ensemble average

y_ (t) -- Indicates time average

-- ltm, Y_ = T-.= y_(t) dt

I I
y_(t) { ]

I
y_(t) I I

I I

_ t

v

_ t
{ I
I I

y_(t) I I

[tl [t_

I
l

k

0

= mean square time average for

record y_ (t)

m

y_
lim 1 /T

= T-.® T y_(t) dt

= mean square time average for

record Yk (t)

k

I=1

mean square ensemble average

for time t = ta

<x'(t,)>
i=l

= mean square ensemble average

for time t = t:

If the random process is stationary,

If the stationary random process is ergodic, -(t = y_;i=l, 2, 3_ oOo

FIGURE 1-2. COMPUTATION OF MEAN SQUARE VALUES
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>Indicates ensemble average

y_ (t) ---- Indicates time average

{TI I )n (t. r) = nm 1
T-.® T yl(t)y_(t+ _') dt

t _ 0

I I = time correlation for record

I I y_(t)
y_(t)

I I t
Ys(t) I !

I I t /,.T
Km I

t I I Yk(t)yk(t+ _') =T-. = "T J yk(t)yt(t+ _) dt
Yk() I I o

S = time correlation for record
yk(t)

k

(t_)y(t_ = k-- = E t
i=1

= ensemble correlation for times t = tz and ta

[ tz [ ta

!

I

If the random process is stationary,

If the stationary random process is

ergodic,

<y(t=)y(t=))

<y(t)y(t+ 1")>

= <y(t) y(t + I")>

= y(t)y(t + I")

= _(r)

FIGURE 1-3. COMPUTATION OF AUTOCORRELATION VALUES

1-7



completely described only by taking averages over the entire ensemble at

every instant of time. If the vibration response is representative of a

stationary random process, the properties of the vibration can be described

by taking averages over the entire ensemble at any one instant of time. If a

vibration response is representative of a stationary and ergodic random

process, the properties of the vibration can be described by taking time

averages over one record from the ensemble.

For the actual flight vehicle vibration problem, a single record may

represent the vibration response at some point on the structure of a given

vehicle. The collection of records needed to form an ensemble would then

represent the vibration responses at that point occurring during flights of all

vehicles of that type. However, data from a large number of vehicles of the

same type is rarely available. An ensemble may be contrived by collecting

records of the vibration response for repeated flights of the same vehicle,

where the time origin of each record is considered to be the start of each

flight. ]Even data of this sort is often difficult to acquire. Usually vibration

e

data from only a few flights or perhaps just one flight is available. As a

result, the vast majority of vibration data reduction is performed by time

averaging single sample records.

I-8



1.Z BASIC DESCRIPTIONS OF VIBRATION DATA

For any time invariant vibration response, whether it be random,

periodic, or a combination of both, the simplest description of the vibration

amplitude is given by the mean square value. For a vibration record 7(t)

".

of length T, the mean square value 7 is given by

i;Z 1 Z
y = -- (t) dt 11 4)

T

T=T
P

for periodic vibration

T_ for random vibration

The positive square root of the mean square value gives the rms (root mean

square) value of the vibration. That is,

Yrms = _ (I. 5)

The mean square value is a measure of both the static and dynamic

portions of the vibration amplitude. The static portion of the vibration (the

D.C. component) is defined by the mean value _ as follows.

T=Tp for periodic vibration

(1.6)

T--_co for random vibration

The dynamic portion of the vibration is defined by the mean square

2

value about the mean (variance) c_ as follows.

T

o_ = -_ - dt (1.7)

T=T
P

for periodic vibration

T---_ co for random vibration
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It is important to note that these three measures of amplitude are related as

follow s. --_

y = z + (y)z (1.8)

Hence, if the mean value of the vibration is zero (_=0), which is often the case

-- Z).
the mean square value and variance will be equal (y2= c_in actual practice,

Mean square or rms vibration level measurements give only a rudi-

mentary description of the vibration amplitude. For most engineering applica-

tions, a more detailed description of the vibration is required. Such detailed

des criptions for periodic and random vibration data will now be discussed.

1. Z. 1 Periodic Vibration Data

As noted in Section i. I. I, a periodic vibration response can be

completely described by a Fourier series which gives the amplitude, frequency,

and phase of all harmonic components of the vibration. However, in actual

practice, the amplitudes and frequencies for the harmonic components of a

vibration response give a sufficient description for most engineering appli-

cations. A knowledge of the associated phase angles are not often required.

The description of a periodic vibration response in terms of its harmonic

amplitudes and frequencies is given by a discrete frequency spectrum.

A typical discrete frequency spectrum is illustrated in Figure I-4.

Note that each harmonic component appears in the frequency spectrum as a

line which has no bandwidth. The peak amplitudes of the components (C O ,

C 1 , C 2, etc.) are equivalent to the coefficients in the Fourier series for

the periodic vibration as shown in Eq. (I. B}. The mean value of the

1-10
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vibration is defined by the coefficient C O at zero frequency. Note that the

mean square value of the vibration is equal to the sum of the mean square

values for the individual components plus the square of the mean.

I. Z. Z Random Vibration Data

If a vibration response is random in nature and assumed to be repre-

sentative of an ergodic stationary process, a reasonably detailed description

of the vibration is obtained from three important properties of random signals.

The first is a statistical description of the amplitude characteristics of the

vibration, which is called the amplitude probability density function. The

second is a statistical description of the time correlation characteristics of

the vibration, which is called the autocorrelation function. The third is a

statistical description of the frequency composition of the vibration, which is

called the power spectral density function. Furthermore, if data from two or

more vibration responses is obtained simultaneously, additional information

is available from several joint properties. These include joint amplitude

probability density functions, cross-correlation functions, cross-power

spectral density functions, and coherence functions.

properties will now be discussed.

I.Z.Z.I Amplitude Probability Density Function

Given a stationary random vibration record

the first order amplitude probability density function
CO

V'--"

l \
p(y) = lirn lirn /

T--_oo Ay--_0 T (Ay)

These various descriptive

y(t) of length T seconds,

p(y) is as follows.

t i (y, y + A y) (1.9)

i-It



The quantity

amplitude interval between y and y + A y

A typical probability density plot

Figure 1-5.

amplitude s

t i (y, y+ Ay ) is the time spent by the amplitude within the narrow

during the ith entry into the interval.

[p(y) versus y] is illustrated in

The area under the probability density plot between any two

Yl and Yz is equal to the probability of the vibration response

having an amplitude within that range at any given time. Obviously, the total

area under the plot is equal to unity since the probability of the vibration having

any amplitude must be one. In other words, it is certain that the vibration

response will have some amplitude between _: infinity. Note that the mean

value, mean square value, and variance for the vibration are related to the

probability density function as foUows.

m

y-

2
y --

1 .Z.2.2

j_2 y p(y) dy

CO

o"2" --_coY (y _ y12 p(y) dy -_ - (g)Z

Autocorrelation Function

(1. lOa)

(1.10b)

(1. lOc)

Given a stationary random vibration record y(t) of length T seconds,

the autocorrelation function Ry (_)
is as follows.

The quantity

.T#

Ry,t,,*r*_= lira -_1 1 y(t) y(t + _ ) dt (1.1 I)
T--_co

is the time difference in seconds, which is often called the

lag time. Note that the autocorrelation function is a real valued even function

which may be either positive or negative.

1-13



ii ii

1,4

0

!

1-14



r
A typical autocorrelation in

Figure 1-6. The autocorrelation function for a vibration response indicates

the relative dependence of the vibration amplitude at any instant on the vibra-

tion amplitude that had occurred _ seconds before. The maximum

value of the autocorrelation function occurs when the lag time is zero. Note

that the mean value, mean square value, and variance for the vibration are

related to the autocorrelation function as follows.

y-- A/ Ry (co)

_- R (0)
Y

Z
= (co)o_ Ry(0) - Ry

(1. lZa)

(1. IZb)

(1.1Rc)

1.2.2.3

the power spectral density function

Power Spectral Density Function

Given a stationary random vibration record y(t)

G (f) is as follows.
Y

G (f) = lira lira I fT v(f2

T-+co,f--0 JO hf
dt

Y

of length T seconds,

(1.13)

2
The

quantity _-f(f,t)is the square of the amplitudes within the narrow frequency

interval between f and f+ Af. Note that the power spectral density function

is a real valued function that is always positive.

A typical power spectrum [Gy(f) versus f] is illustrated in Figure

1-7. The area under the power spectrum plot between any two frequencies

fl and fz is equal to the mean square value of the vibration response within

that frequency range. The total area under the plot is equal to the total mean

1-15
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square value of the vibration response. If the vibration response has a non-

zero mean value (a D.C. component), this will appear in the power spectrum

as a delta function at zero frequency.

equal to the square of the mean value.

The area under the delta function is

Note that the existence of a delta

function at a frequency other than zero would represent a sine wave at that

frequency.

It is important to mention that the power spectral density function

for a stationary random signal is the Fourier transform of the autocorrelation

function. Hence, a power spectrum contains the same basic information as

an autocorrelation plot. Furthermore, the power spectrum presents the

information in a frequency format which is more convenient for most engineer-

ing applications. However, there are special situations where an autocorrela-

tion plot is more useful than a power spectrum. An example is the problem

of detecting periodic components in an otherwise random vibration response.

These matters are discussed in greater depth in Section Z,

I.Z.Z.4 Joint Amplitude Probability Density Function

Given two stationary random vibration records, x(t)and y(t), each

of length T seconds, the joint amplitude probability density function p(x, y)

is as follows, co

p(x,y) = lim lim 1 V ti(x, x+Ax;y,y+ Ay)

T--_oo _x---_O T(Ax)(Ay)

A y--- 0 (I.14)

The quantity ti(x, x+ Ax;y, y+Ay) is the time spent by the amplitudes x(t)

and y(t) when they are simultaneously within the narrow amplitude intervals

1 -18



between x and x + Ax, and y and y + _y, respectively, during the ith

simultaneous entry into the intervals.

A typicaljoint pro bility densityplot [p(x. versus x and y]
is illustrated in Figure 1-8. Note that the plot has three dimensions. The

volume under the joint probability density plot bounded by the amplitudes

Xl ' x2 ' Yl ' and YZ is equal to the probability that x(t) and y(t) will simul-

taneously have amplitudes within those ranges at any given time. Obviously,

the total volume under the plot is equal to unity since the probability of the

two vibration responses simultaneously having any amplitudes must be one.

1.2.Z.5 Cross-Correlation Function

Given two stationary random vibration records, x(t) and y(t), each

of length T seconds, the cross-correlation function 1Rxy(T ) is as follows.

_=_

x(t) y(t
1

Rxy(T ) = lim -_= +T) dt {I. 15)
T--_oo #0

The quantity T is the time difference in seconds, which is often called the

lag time. Note that the cross-correlation function is real valued but not even,

and may be either positive or negative.

A typical cross-correlation plot [ 1Rxy{_ ) versus _] is illustrated in

Figure I-9. The value of the cross-correlation function for two vibration

responses indicates the relative dependence of the amplitude of one vibration

response at any instant of time on the amplitude of the other vibration response

that had occurred _ seconds before. In actu_l practice, cross-

correlation functions have wide applications to the evaluation of linear
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structural transfer characteristics. Furthermore, cross-correlation

functions furnish a powerful tool for localizing vibration sources by deter-

mining time delays and structural transmission paths. These matters are

discussed in more detail in Section 7_

1.2.2.6

of length T seconds.

as follows.

Cross-Power Spectral Density Function

Given two stationary random vibration records, x(t) and

the cross-power spectral density function

y(t), each

Gxy(f) is

Gxy (f)= Cxy (f)- JOxy"(f) (I.16)

In words, the cross-power spectral density function is a complex-valued

C (f) called the cospectrum, and imaginary part
xy

The cospectrurn and quad-spectrum are

function with a real part

0 (f) called the quad-spectrum.
xy

T

I [ x..(f, t) t) dt (I.I
C (f)= tim lira T(Af) "#0 z__ -ix-V'f(f'

6a)

xy T -"co Af -_0

T

, J0lira lira T(Af) xAf(f, t) yAf(f, t) dt (l.16b)OxY(f) = T--,-co /xf--_0

given by

The quantities XAf(f, t) and yAf(f, t) are the amplitudes within the narrow

frequency interval between f and f+_f. The symbol (J_) in Eq. {l.10b)

means that x(t) is 90 degrees out of phase with y(t). Note that both the

cospectrum and quad-spectrum may have either positive or negative values.

It is usually more desirable to express the cross-power spectral density

function in complex polar coordinates with a magnitude and phase angle, rather
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than a "standard" complex number as in Eq. (I.16). In polar notation,

the cross-power spectral density function Gxy(f ) is given by

je (f)

G (f) : !G zlf) I e (1.17)

where the magnitude term

e (f} are as follows.
x7

[Gxy(f) l and the associated phase angle

Io_(f)l= (f)+O (f) (1.17a)

-Q (f)
e (f)= arc tan x7 (l.17b)

xy c (f)
xy

A typical cross-power spectrum [Gxy(f ) versus

in Figure I - 10.

f] is illustrated

Cross-power spectral density functions have wide appli-

cations to the measurement and evaluation of structural transfer charac-

teristics. The details of such applications are beyond the scope of this

section. However, several important associations involving the cross-

power spectrum for structural input-output relationships will be noted.

Consider a structure (or any other physical system) with a linear

frequency response function of H(f). Note that H(f) is a complex-valued

function. Let the input excitation be x(t) and the output response be y(t).

The following formulas apply.

Gxy(f) = H(f) Gx(f )

Gyx(f) : H (f) Gx(f )

GxT(f) Gy(f)
H(f) =

Gx(f) Gyx(f)

(1.18a)

(l.18b)

(1.18c)
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Here, H_(f) is the complex conjugate of H(f), Gx(f ) is the power spectrum

of the excitation x(t), and G (f) is the power spectrum of the response
Y

y(t). It is important to note that Gxy(f) _ Gyx(f }.

It was mentioned in 1.2.2.3 of this section that the power spec-

tral density function and the autocorrelation function for a stationary

vibration response are Fourier transform pairs. It should now be noted

that the cross-power spectral density function and the cross-correlation

function for two stationary vibration responses are also Fourier trans-

form pairs. Hence, both functions contain the same basic information.

In general, the time format of the cross-correlation function is more

convenient for investigations of structural transmission paths and time

delays while the frequency format of the cross-power spectrum is more

convenient for evaluating structural transfer characteristics.
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1.2.2.7 Coherence Function

Given two stationary random vibration records, x(t) and y(t),

Z

the coherence function yxy(f) is as follows.

.vZlf) = Gxyl£) Gyxlf) I Gxylf)l Z
Gx(f) Gy(f) ' - Gx(f) Gy(f)

Here, Gx(5) and Gy(f) are the power spectra of x(t) and y(t),

respectively, and G (f) and G (f) are the cross-power spectra
xy yx

between x(t) and y(t).

If the two vibration responses are completely uncorrelated

(incoherent), the coherence function will equal zero. If the two vibra-

tion responses are correlated in a linear manner, the coherence

function will have a value between zero and one depending upon the

degree of correlation. A coherence function of unity means that the

vibration measured at one point is the result solely of the vibration

at the second point. These matters are discussed in greater depth in

Section Z.

(l.tg)
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I. 3 GENERAL TECHNIQUES FOR PERIODIC DATA REDUCTION

The basic analog techniques which are useful for periodic

vibration data reduction and analysis are now reviewed in terms of general

functions. The basic digital techniques employed for vibration data

reduction and analysis are presented in Section 3.6.

As noted in Section I. 2. I, a periodic vibration response can be

completely described (except for phase relationships) by a discrete

frequency spectrum which gives the amplitude and frequency of all

harmonic components. Given a sample vibration response record in the

form of an analog voltage signal, a discrete frequency spectrum for the

sampled data may be obtained by using an electronic wave analyzer, or

as it is often called, a spectrum analyzer.

There are two basic types of spectrum analyzers. The first type

employs a collection of contiguous frequency bandpass filters. The

filters may be either constant bandwidth filters or constant percentage

filters whose bandwidths are proportional to their center frequencies. When

a periodic signal is applied to the bank of filters, each passes those fre-

quencies lying within its pass band and excludes all others. The output

amplitudes from the filters are then detected and recorded simultaneously

as a function of time. The instantaneous output from the filters may also be

recorded directly, if so desired. Hence, the spectrum of the applied signal

is broken up into as many intervals as there are filters in the bank. This
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multiple filter type analyzer is sometimes called a real time spectrum

analyzer because its operation is substantially instantaneous. This

feature constitutes its primary advantage. A secondary advantage is that

phase information can be retained if proper calibration procedures are

employed. The primary disadvantage of a multiple filter type analyzer

is cost. If high resolution is to be obtained, a large number of expensive

filters and amplitude detectors must be incorporated in the analyzer. A

functional block diagram for a multiple filter type spectrum analyzer is

shown in Figure I-II.

The second type of spectrum analyzer employs a single narrow

frequency bandpass filter. The signal is moved in frequency past the fixed

narrow bandpass filter by application of the heterodyne principle. The out-

put amplitude from the filter is detected and recorded as a function of

frequency, giving the spectrum for the applied signal. The primary advan-

tage of the single filter type spectrum analyzer is high resolution. Since

only a single fixed filter is used, its characteristics can be optimized

without adding appreciably to the cost of the analyzer. The primary dis-

advantage of this single filter type analyzer is that the time required to

perform an analysis is relatively long since the entire frequency range of

the signal is investigated with only one narrow bandpass filter. It should

be noted that single filter spectrum analyzers are usually equipped with

several filter selections having different bandwidths to permit flexibility in

choosing the resolution desired for a given analysis. A functional block

diagram for a single filter type spectrum analyzer is shown in Figure I-IZ.
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For either type of spectrum analyzer, the output amplitude

detector consists of circuits which compute one or more of three different

amplitude functions; namely, the peak amplitude, the rectified average

amplitude, and/or the mean square amplitude. If the resolution for a

given periodic signal analysis is sufficiently sharp to identify each individual

frequency component of the signal, the amplitude detection circuit employed

is of no direct concern since the outputs from the filter(s) will always be

sine waves. The peak, average, and mean square amplitudes for sine

waves have fixed relationships to one another, as follows.

instantaneous amplitude = C sin a)t

peak amplitude = C

rectified average amplitude = 0. 636 C

mean square amplitude = 0.5 C Z

root mean square (rms) amplitude = 0. 707 C

(I.zo)

Hence, any one of the three detection circuits may be used and read out

in terms of any other amplitude function desired by simply calibrating the

readout scale in an appropriate manner. For example, the peak value of

the filtered signal may be detected and read out as an rrns amplitude by

noting that the rms amplitude is equal to 0.707 times the peak amplitude.

It is important to emphasize that these relationships apply only when the

analysis resolution is sufficiently sharp to isolate individual frequency

components. The relationships in Eq. (I. Z0) do not apply to the sum of

two or more sine waves.
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The practical considerations associated with the analysis of periodic

signals are reviewed below. All relationships stated are taken from

Reference 2.

(a) Analysis Accuracy

If the various limitations noted in (b) through (d) to follow are

observed, the only errors in a spectrum analysis of periodic data are the

basic measurement errors inherent in the spectrum analyzer design capa-

bilities and calibration techniques. There are no intrinsic statistical

uncertainties or sampling errors associated with the proper reduction and

analysis of periodic vibration data.

(b) Resolution

The frequency spectrum for a periodic signal is theoretically a

discrete line spectrum where each component is a delta function with no

bandwidth. However, a spectrum analyzer will display each component

as a peak with an apparent bandwidth, which of course will be the band-

Width of the spectrum analyzer filter. Thus, the exact frequency of the

signal components will be more accurately defined as the bandwidth of the

analyzer filter is made narrower. The accuracy with which the frequencies

of individual components are identified is generally referred to as the

resolution of the analysis.

It would appear that the best method of analysis would be to use

the narrowest possible bandpass filter. However, for the multiple filter

type spectrum analyzer, the required number of filters and the associated
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cost are inversely proportional to the bandwidth of the filters. For the

single filter type spectrum analyzer, the required analysis time is in-

versely proportional to the bandwidth of the filter, as is discussed later.

It is important to note, however, that the resolution of any given spectrum

analysis should always be sufficient to distinguish between adjacent

frequency components. In other words, the analyzer filter bandwidth

should always be narrower than the frequency interval between the com-

ponents of the signal being analyzed. Thus, the general criteria for

minimum permissible resolution is

B -_{I/Tp) (I.Zl)

where B is the analyzer filter bandwidth in cps and Tp is the period of

the vibration data in seconds.

An illustration of a properly resolved spectrum analysis is

presented in Figure 1-13. In this example, T = 1/50 second, so the
P

maximum permissible bandwidth for acceptable resolution would be

B = 50 cps. However, the actual bandwidth used was B = Z cps resulting

in a very precise resolution.

(c) Sample Record Length

Theoretically, the record length required to perform a spectrum

analysis on sampled periodic vibration data is only Tp seconds long (the

length of one vibration period). However, for certain practical reasons,

it is desirable that the sample record be very much longer than one period.
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Multiple filter analyzers are normally employed only when relatively long

sample records are involved. However, single filter analyzers are often

used to analyze relatively short records.

_nalysis of a relatively short sample record with a single filter

type spectrum analyzer is usually accomplished by making a continuous

loop from the sample record so that the data signal may be continuously

applied to the analyzer. The formation of the loop produces, in effect,

a fictitious fundamental period for the data.

is an exact even multiple of one period T
p'

Unless the record length

the loop will tend to introduce

fictitious frequency components into the analysis. However, these effects

become insignificant if the record length is, say, 10 times longer than the

period of the vibration data. For example, assume a periodic signal with

a fundamental frequency of Z5 cps is to be analyzed. The length of the

sample record should be T _IOT = 0.4 seconds.
P

(d) Avera_in_ Time

The peak, average, and/or mean square amplitude detectors in-

corporated in the spectrum analyzer compute the desired amplitude function

by smoothing or time averaging the instantaneous output of an appropriate

rectifier circuit. For example, the average amplitude of a signal com-

ponent is usually measured by a simple A.C. voltmeter circuit where the

component is rectified, and the instantaneous rectified amplitude is

averaged by smoothing with an equivalent low-pass RC filter. It is clear

that the equivalent RC time constant of the averaging filter should be
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longer than the period of the vibration data being analyzed. Thus, a general

criteria for the minimum time constant of the averaging filter is

K =" T (I. ZZ)
P

where K is the equivalent RC time Constant in seconds.

For example, assume a periodic signal with a fundamental frequency

of Z5 cps is to be analyzed. The minimum time constant for the averaging

filter is K _'Tp = 0.04 seconds.

(e) Scan Rate and Analysis Time

For the multiple filter type spectrum analyzer, the frequency com-

ponents of the applied signal are concurrently measured, so the analysis

time is substantially instantaneous. However, for the single filter type

spectrum analyzer, the frequency components of the applied signal must

be individually measured by scanning through the entire frequency range of

interest. If the scan is too fast, one of two difficulties may occur.

I. The narrow bandpass filter of the spectrum analyzer will not

fully respond to the individual frequency components of the

signal.

Z. The amplitude detector averaging filter will not fully respond

to the individual frequency components of the signal.

The response time for narrow bandpass filters is a function of the

exact filter characteristics, but, in general, will be less than (I/B)

seconds where B is the bandwidth of the filter in cps. Thus, a general

criteria for the maximum analysis scan rate based on the analyzer filter

response is

scan rate-= B Z cps/sec (l. Z3a)
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The response time for equivalent R C low-pass averaging filters

is such that about 98% of full response is reached in a time equal to four

time constants (4K). Thus, a general criteria for the maximum analysis

scan rate based on the averaging filter response is

B cps/secscan rate -_--
4K

If the total frequency range for the analysis is F cps, the

minimum analysis time is

(1. z3b)

F
seconds (l. Z4a)

analysis time _. BE

4KF
-- seconds (I. Z4b)

B

For example, assume a periodic signal is to be analyzed with a

filter bandwidth of B = I0 cps and an averaging time constant of K = 0. I

seconds, over a frequency range from near zero to Z000 cps (F = Z000 cps).

The maximum scan rate is Z5 cps/sec, since Eq. (l. Z3b) produces the

smaller value. Hence, the minimum analysis time is 80 seconds, since

Eq. (I. Z4b) produces the larger value.
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I. 4 GENERAL TECHNIQUES FOR RANDOM DATA REDUCTION

The basic analog techniques which are useful for random vibra-

tion data reduction and analysis are now reviewed in terms of general

functions. The basic digital techniques employed for vibration data reduc-

tion and analysis are presented in Section 3.6.

As noted in Section I. 2.2, a stationary random vibration response

can be described in the amplitude domain by a probability density function

as given in Eq. (l. 9), in the time domain by an autocorrelation function as

given in Eq. (I. 1 I), and in the frequency domain by a power spectra/

density function as given in Eq. (l. 13). if two or more vibration response

records are available, additional information may be obtained from a

joint probability density function as given in Eq. (I. 14), a cross-correlation

function as given in Eq. (I. 15), and a cross-power spectral density function

as given in Eq. (I. 16).

The true measurement of the above mentioned properties requires

the determination of a limit as the record length T approachee infinity.

Furthermore, the true measurement of probability and power spectral

density functions also requires the determination of a limit as either an

amplitude interval Ay or a frequency interval Af approaches zero.

Clearly, the determination of these limits is physically impossible. Thus,

no real instrument can actually measure the true properties of a random

vibration. However, measurements can be performed which produce
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meaningful estimates for the desired properties.

techniques are now discussed.

1.4.1

These measurement

2tmplitude Probability Density Analysis

Given a sample vibration response record in the form of an

analog voltage signal y(t) with a finite length of T seconds, the amplitude

probability density function for the vibration response may be estimated

from Eq. (I. 9) as follows.

t
W

= (l.ZS)
W

Here, t is the average portion of the time spent by the signal y(t)
W

within a narrow amplitude interval having a gate width of W volts and

a center amplitude of y volts. The hat (^) over _(y) means that the

measured quantity is only an estimate of p(y), since the record length T

and the gate width W are finite. In words, the amplitude probability

density function is estimated by the following operations.

I. .Amplitude filtering of the signal by a narrow amplitude gate

having a gate width of W volts.

Z. Measurement of the total time spent by the signal within the

gate.

3. Division of the time spent within the gate by the total sampling

time, to obtain the average portion of time spent by the signal

within the gate.

4. Division of the average portion of the time spent within the

gate by the gate width W.

As the center amplitude of the gate is moved, a plot of the probability

density function versus amplitude is obtained.
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The above operations are accomplished by an analog amplitude

probability density analyzer, which will be called an APD analyzer for

simplicity. In general, an APD analyzer measures the time spent by a

signal within some narrow amplitude interval by use of a voltage gate

(narrow band voltage discriminator) followed by a clock circuit. When the

input signal amplitude from the sample record falls within the gate, the

clock circuit operates. For all other signal amplitudes, the clock circuit

does not operate. The clock circuit output is averaged over the entire

time of observation T to obtain the average portion of time spent by the
a

signal amplitude within the narrow gate. The required division by the

gate width W may be obtained by a proper scale calibration.

There are two basic types of APD analyzers. The first type

employs a collection of contiguous voltage gates with equal gate widths.

The multiple gate type analyzer measures the probability density within

each gate simultaneously to give a plot of probability density versus

amplitude. The second type employs a single gate whose center voltage

is variable relative to the voltage of the signal. The single gate type

analyzer produces a plot of probability density versus amplitude by sweep-

ing (or stepping) the single gate through the entire range of voltage ampli-

tudes of interest. A functional block diagram for a single gate A_PD

analyzer is shown in Figure 1-14.

The practical considerations associated with amplitude probability

density analysis are reviewed below. All relationships stated are taken
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from Reference Z. Many of the relationships are also studied experi-

mentally in Reference 3.

(a) Analysis Accuracy

The analysis of random vibration data involves basic measurement

errors due to the analysis equipment design capabilities and calibration

techniques, just as is true for the analysis of periodic vibration data.

However, the analysis of random data also involves an additional error

which is called the statistical uncertainty or probable sampling error. As

was mentioned earlier, the data measured from sample records of finite

length constitute only statistical estimates of the true properties of the

sampled vibration response. The expected deviation of the estimated

properties from the actual properties of the random vibration represent

the statistical uncertainties associated with the measurements. This un-

certainty may be defined in terms of a normalized standard deviation for

the sampling distribution, which is often called the standard error e .

For the specific case of amplitude probability density analysis,

the standard error associated with a measured estimate _(y) is as follows.

O. ZO
e

WBT

#%

Here, p(y) is the measured probability density, %_ is the amplitude gate

width in relative amplitude units, B is the noise bandwidth of the signal

being investigated, and T is the length of the analyzed sample record in

seconds.

(l.z6)
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Several important features of Eq. (I. 26) should be noted. First,

this expression for the standard error is a simplification of more compli-

cated relationships developed theoretically and empirically in Section 14

of Reference 3. However, Eq. (I. 2b) is an acceptable approximation for

most applications. Second, the standard error e is a function of the actual

probability density estimate that is measured. Thus, for any given gate

width, bandwidth, and record length, the uncertainty of the estimate varies

with the amplitude being analyzed.

bandwidth of the vibration signal.

Third, the bandwidth B is the noise

That is, B is the bandwidth of an ideal

rectangular shaped filter which would pass white noise with the same total

power as is represented by the vibration signal. The determination of

noise bandwidths for random signals is discussed in Section I. 5.

The meaning of the standard error e is as follows. Assume a

stationary random vibration response with a true probability density func-

tion of p(y) is repeatedly sampled at different times, and an estimate

_(y) is measured for each sample.

the difference between the estimate

less than ± e _(y). Stated in another way, if an estimate _{y) is

For about 68% of the estimates obtained,

p{y) and the true value p(y) will be

measured, one may say with about 68% confidence that the true value p(y)

is within the range (I + e)_(y). A plot of the standard error • versus

the WBT product for various amplitude probability density estimates is

presented in Figure 1-15.
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For example, assume an amplitude probability density function

is measured from a sample record that is T = 10 seconds long using an

AI:_D analyzer with a gate width of W = O. 1 volts. Further assume the

noise bandwidth of the signal is B = 100 cps. If a probability density of

A

p =0.16 were measured at the amplitude

standard error for the estimate would be

y= I. 5 volts (Yrms = 1 volt), the

e= 0.05. Hence, one could say

with 68% corffidence that the true probability density at that amplitude

is within ± 5% of the measured value, or between 0.15Z and 0. 168.

(b) Resolution

It is seen in Eq. (I. Z6) that the statistical uncertainty of proba-

bility density estimates is inversely proportional to the width of the ampli-

tude gate. One might then conclude'that improved estimation accuracy

can easily be obtained by simply increasing the gate width. However,

increasing the gate width reduces the resolution of the analysis, i.e.,

it reduces the ability of the analysis to properly define peaks in the

probability density plot. The selection of the analyzer gate width is always

a compromise between estimation uncertainty and resolution. A general

criteria for proper resolution is a gate width that is less than one-fourth

of the rms signal amplitude. That is,

1
W -_ --y (1. Z7)

4 rms

where W is the analyzer gate width in volts and Yrms is the root mean

square value of the signal being analyzed in volts.
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(c) Sample Record Length

As seen from Eq. (I. Z6), the sample record length T limits the

statistical accuracy attainable in an amplitude probability density analysis.

The longer the record length, the lower the uncertainty in the resulting

probability density estimates. If the statistical uncertainty of a proba-

bility density analysis is to be limited to a given desired amount, these

matters must be considered before the data is gathered to assure that

sample reoords are sufficiently long.

(cl) Avera_in_ Time

An APD analyzer computes the portion of time spent by the signal

amplitude within the gate by averaging the output of the gate clock circuit.

The averaging may be accomplished-by true linear integration, called

true averaging, or by continuous smoothing with an equivalent low-pass

RC filter, called RC averaging. True averaging produces a single

probability density estimate after a specific averaging time T a while

RC averaging produces a continuous probability density estimate. If the

RC time constant of the averaging filter is K and the record length T

is long compared to K, the continuous estimate at any instant of time

has an uncertainty equivalent to an estimate obtained by true averaging

over a time interval of T a = ZK.

For the case of true averaging, it is clear that the averaging time

T a should be as long as the record length T if the uncertainty in the

resulting estimates is to be kept at a minimum. In other words, all of

the information available from the sample record should be employed for
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the probability density measurement. If T is less than T, the uncertainty
a

will be increased since T will replace T in Eq. (1.26). If T is greater
a a

than T, as it could be when the sample record is formed into a continuous

loop for analysis, the uncertainty will not be decreased from the value given

in Eq. (1.26) since one is simply looking at the same information more than

once.

For the case of RC averaging, minimum uncertainty can be achieved

only by making the time constant K very long. However, a long averaging

time constant reduces the scan rate and greatly increases the total analysis

time, as is discussed in (e) to follow. A reasonable compromise is to use

an averaging time constant that is at least as long as one record length T.

This will produce a continuous measurement which at any instant has a

standard error • within 4% of the minimum attainable value given by _-q.( 1.26).

Thus, the general criteria for the ideal averaging time for a proba-

bility density analysis is as follows.

for true averaging, T -- T (1.28a)
a

for RC averaging, K _" T (1.28b)

Here, Ta is the true averaging (integration) time in seconds, and K is

the time constant of the equivalent RC averaging filter in seconds.

(e) Scan Rate and Analysis Time

For the multiple gate type APD analyzer, the probability density is

concurrently measured over all amplitudes of interest, so the analysis

time is equal to the record length T. However, for the single gate type

APD analyzer, the probability density at all amplitudes of interest must be
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measured by scanning through the desired amplitude range. If the scan is

too fast, all the information available at a given amplitude will not be

viewed by the analyzer gate over the entire record length, and the statis-

tical uncertainty of the resulting estimate will be increased. If RC

averaging is used, the scan rate is further limited because time must be

allowed for the RC averaging filter to respond to abrupt changes in the

probability density function. The limitations imposed upon the scan rate

by these considerations are as follows.

for true averaging,
W

scan rate _
T

a

Here, T
a

seconds,

(I.Zga)

W
for RC averaging, scan rate _ -- (I. Zgb)

4K

is the averaging time in seconds, K is the RC time constant in

and W is the gate width in volts. Hence, scan rate has the units

(i. 30a)

of volts per second.

If the total amplitude range for the AlC'D analysis is A volts, the

minimum analysis time is as follows.

T A
a

for true averaging, analysis time _---
W

4KA

for RC averaging, analysis time _-
W

For example, assume the amplitude probability density function

for a random vibration response is to be estimated from a sample record

of length T= 10 seconds over an amplitude range from minus 4 volts to

(I. 30b)
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plus 4 volts (A = 8 volts) using an APD analyzer with a gate width of

V_r = 0. l volts. The rms amplitude of the signal is assumed to be one volt.

If true averaging is used, T a = 10 seconds and the maximum scan rate is

0. 01 volts/second. Hence, the minimum analysis time is 800 seconds or

13.3 minutes. If RC averaging is used, K__10seconds, and the maximum

scan rate is 0.0025volts/second. Hence, the minimum analysis time is

3Z00 seconds, or about 53 minutes.

1.4. Z Autocorrelation Analysis

Given a sample vibration response record in the form of an analog

voltage signal y(t) with a finite length of T seconds, the autocorrelation

function for the vibration response may be estimated from Eq.

follow s.

(I. 11) as

A

Ry(T) = y(t)y(t+T) (I.31)

Here, y(t)y(t + T) is the average product of the instantaneous signal

amplitude at two different times which are _ seconds apart. The hat (z_)

A

over Ry(T ) means that the measured quantity is only an estimate of

Ry(T), since the record length T is finite. In words, the autocorrelation

function is estimated by the following operations.

1. Delaying the signal by a time displacement equal to l" seconds,

called the lag time.

Z. Multiplying the amplitude at any instant by the amplitude that
had occurred T seconds before.

3. Averaging the instantaneous amplitude product over the

sampling time.
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As the lag time is moved, a plot of the autocorrelation function versus lag

time is obtained.

The above operations are accomplished by an analog autocorre-

lation function analyzer, which will be called an ACF analyzer for simplic-

ity. In general, an ACF analyzer displaces the signal in time by use of a

magnetic signal recorder with a variable lag time between the record and

playback. This can be accomplished, for example, with a magnetic clrum

recorder where the location of the playback head is variable relative to

the location of the record head. The input and output of the lag time

generator are then multiplied and averaged. The lag time is variable

over a range from zero to the longest sampling times that are anticipated.

Since the autocorrelation function is an even function, it is not necessary

to make measurements with negative lag times. A functional block dia-

gram for an ACF analyzer is shown in Figure 1-16.

The practical considerations associated with autocorrelation

analysis are reviewed below. All relationships stated are taken from

Reference 2

(a) Analysis Accuracy

As discussed in Section 1.4.1(a), the analysis of random vibration

data involves not only basic measurement errors, but also a statistical

uncertainty inherent in the sampling procedures. This uncertainty may

be defined in terms of the standard error e for the sampling distribution.

For the specific case of autocorrelation analysis, the standard error
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associated with a measured estimate
A

Ry (l') is as follows.

i
e _ (I. 3Z)

Here, B is the noise bandwidth of the signal in cps and T is the length of

the analyzed sample record in seconds. It is assumed in deriving Eq.

(I.3Z) that T "='=ITI and that BT _ I0.

Two important features of Eq. (i. 3Z) should be noted. First, this

expression for the standard error is a conservative approximation which

is accurate for lag times near zero. For large lag times, the standard

error is not explicitly defined but is somewhat less than the quantity given

in Eq. (I. 32). Second, the bandwidth B is the noise bandwidth of the

vibration response signal. The determination of noise bandwidths is

covered in Section 1.5.

The general meaning and interpretation of the standard error e

is discussed in Section 1.4. l(a). The specific interpretation for auto-

correlation analysis is as follows. Assume a stationary random vibration

response with a true autocorrelation function of R (_') is sampled, and an
Y

A

estimate Ry('[') is measured from the sample. If e is reasonably small,

say less than 0.30, it may be said with about 68% confidence that the true

/%

Value Ry(_[) is within the range (i #_ e)Ry('[). A plot of the standard error

e versus the BT product is presented in Figure I. 17.

For example, assume an autocorrelation function is measured

from a sample record that is T= I0 seconds long. Further assume the

noise bandwidth of the signal is B = I00 cps. The standard error for the

l-5Z
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resulting estimate is e _ 0. 032. Hence, if a measured estimate Ry(q')

at a given lag time were 0.3 volts Z, it could be said with 68% confidence

that the true autocorrelation function for that lag time is within _.3. Z%

Z
or between 0. Z9 and 0.31 voltsof the measured value,

(b) Resolution

A

As seen from Eq. (I. 31), the autocorrelation function R(T ) must

be estimated at various different lag times 1_ to obtain a plot of the auto-

correlation function versus lag time. The interval between the lag times

at which computations are made defines the resolution of the autocorre-

lation plot. Based upon practical considerations, a general •criteria for

proper resolution is a lag time interval that is less than one-fourth the

reciprocal of the sigr_albandwidth. That is,

1
h -_ -- (1.33)

4B

where h is the interval between lag times in seconds and B is the noise

bandwidth of the signal in cps.

The relationship in Eq. (1.33) is directly appropriate for the case

when an autocorrelation function is computed at specific lag times, l" 1

TZ -- TI +h ' T3 -- _1 + Zh, etc. Howe vet, analog instruments often

determine an autocorrelation plot by continuous averaging while the time

delay generator makes a continuous scan through the lag time range of

interest. For this case, the relationship in Eq. (I. 33) constitutes the

basis for a limit on the lag time scan rate. This limit is discussed in

(e) to follow.
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(c) Sample Record Length

As seen from Eq. (1.32), the sample record length T determines

the statistical accuracy attainable in an autocorrelation analysis. The

longer the record length, the lower the uncertainty in the resulting auto-

correlation estimates. If the statistical uncertainty of an autocorrelation

analysis is to be limited to a given desired amount, these matters must be

considered before the data is gathered to assure that sample records are

su£ficiently long.

(d) Avera_in_ Time

An ACF analyzer computes the mean product of the signal ampli-

tudes at two different times by averaging the output of the multiplier

circuit. The averaging may be accomplished by true linear integration,

called true averaging, or by continuous smoothing with an equivalent low-

pass RC filter, called RC averaging. True averaging produces a single

autocorrelation estimate after a specific averaging time T a while RC

averaging produces a continuous probability density estimate.

For the reasons presented in Section i.4.1(d), the general criteria

for the ideal averaging time for an autocorrelation analysis is

Here, T
a

for true averaging, T = T
a

for RC averaging, K _ T

is the true integrating time in seconds,

(1.34a)

(1.34b)

and K is the time con-

stant of the equivalent RC averaging filter in seconds.
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